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1 The displacement x at time t of an oscillating system from a fixed point is given by

where 

(i) For what value of l is the motion simple harmonic? State the general solution in this case.
[3]

(ii) Find the range of values of l  for which the system is under-damped. [3]

Consider the case 

(iii) Find the general solution of the differential equation. [3]

When , and , where is a positive constant.

(iv) Find the particular solution. [4]

(v) Find the least positive value of t for which [3]

Now consider the case with the same initial conditions.

(vi) Find the particular solution and show that it is never zero for [8]

2 The positive quantities x, y and z are related and vary with time t, where . The value of x is
described by the differential equation

When 

(i) Solve the equation to find x in terms of t. [9]

The quantity y is related to x by the differential equation . When 

(ii) Solve the equation to find y in terms of x. Hence express y in terms of t. [5]

The quantity z is related to x by the differential equation When 

(iii) Solve this equation for z in terms of x. Calculate the values of x, y and z when giving
your answers correct to 3 significant figures. [10]

t � 1,

t � 0, z � 3.x 
dz

dx
� 2z � 6x .

t � 0, y � 4.2x 
dy

dx
� y
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dt
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t � 0
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3 Answer parts (i) and (ii) on the insert provided.

Two spherical bodies, Alpha and Beta, each of radius 1000 km, are in deep space. The point A is
on the surface of Alpha, and the point B is on the surface of Beta. These points are the closest
points on the two bodies and the distance AB has the constant value of 8000 km.

A probe is fired from A at a speed of in an attempt to reach B, travelling in a straight line.
At time t seconds after firing, the displacement of the probe from A is x km, and the velocity of the
probe is .

The equation of motion for the probe is 

This differential equation is to be investigated first by means of a tangent field, shown on the insert.

(i) Show that the direction indicators are parallel to the v-axis when Show
also that the direction indicators are parallel to the x-axis when Hence
complete the tangent field on the insert, excluding the point [6]

(ii) Sketch the solution curve through and the solution curve through . Hence
state what happens to the probe when the speed of projection is

(A) ,

(B) [6]

(iii) Solve the differential equation to find in terms of x and [6]

(iv) Given that the probe reaches B, state the value of x at which is least. Hence find from your
solution in part (iii) the range of values of for which the probe reaches B. [6]

4 The simultaneous differential equations

are to be solved for 

(i) Show that  [6]

(ii) Find the general solution for x in terms of t. Hence obtain the corresponding general solution
for y. [9]

(iii) Given that , when , find the particular solutions for x and y and sketch a
graph of each solution. [9]

t � 0y � 17x � 4

d2x

dt2 � 2
dx

dt
� 3x � –6.

t � 0.

dx

dt
� 2x � y � 3

dy

dt
� 5x � 4y � 18

V0

v2

V0.v2

0.05 km s–1.

0.025 km s–1

(0, 0.05)(0, 0.025)

(4000, 0).
x � 4000 (v � 0) .
v � 0 (x � 4000) .

v 
dv

dx
�

1
(9000 � x)2 �

1
(1000 � x)2 .

v km s–1

V0 km s–1
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1(i) 0λ =  B1   
 cos 5 sin 5x A t B t= +  M1 cos 5t or sin 5t or cos sinω ω+A t B t  seen  

or GS for their λ  
 

  A1   
    3 
(ii) 2(2 ) 4 5 0λ − ⋅ <  M1 Use of discriminant  
  A1 Correct inequality  
 0 5λ< <  A1 Accept lower limit omitted or 5−   
    3 
(iii) 2 2 5 0α α+ + =  M1 Auxiliary equation  
 1 2 jα = − ±  A1   
 ( )e cos 2 sin 2tx C t D t−= +  F1 CF for their roots  
    3 
(iv) 0x C=  M1 Condition on x  
 ( ) ( )e cos 2 sin 2 e 2 sin 2 2 cos 2t tx C t D t C t D t− −= − + + − +&  M1 Differentiate (product rule)  
 0 2C D= − +  M1 Condition on x&   
 1

02D x=     
 ( )1

0 2e cos 2 sin 2tx x t t−= +  A1 cao  
    4 
(v) 1

2cos 2 sin 2 0t t+ =  M1   
 tan 2 2t = −  M1   
 1.017t =  A1 cao  
    3 
(vi) 2 6 5α α+ +  M1 Auxiliary equation  
 1, 5α = − −  A1   
 5e et tx E F− −= +  F1 CF for their roots  
 0x E F= +  M1 Condition on x  
 5e 5 et tx E F− −= − −&     
 0 5E F= − −  M1 Condition on x&   
 5 1

0 04 4,E x F x= = −     
 ( )51

04 5e et tx x − −= −  A1 cao  
 ( )41

04 e 5 et tx x − −= −  M1 Attempt complete method  
 4

00 5 e , 0, e 0 0− −> ⇒ > > > ⇒ >t tt x x  i.e. never zero E1 Fully justified (only 0≠  required)  
    8 
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2(i) 2 0 2λ λ+ = ⇒ = −  M1   
 CF 2e tx A −=  A1   
 PI x at b= +  B1   
 2( ) 1a at b t+ + = +  M1 Differentiate and substitute  
 2 1, 2 1a a b= + =  M1 Compare  
 1 1

2 4,a b= =  A1   
 21 1

2 4 e tx t A −= + +  F1 CF + PI  
 1

40, 1 1t x A= = ⇒ = +  M1 Condition on x  
 231 1

2 4 4 e tx t −= + +  F1 Follow a non-trivial GS  
     
 Alternatively:    
 M1   
 ( ) 2exp 2 d e tI t= =∫  

A1 Integrating factor  
 

( )2 2 2de 2e e 1
d

t t tx x t
t

+ = +  B1 Multiply DE by their I  

 ( )2 2e e 1 dt tx t t= +∫  M1 Attempt integral  
 ( )2 21 1

2 2e 1 e dt tt t= + − ∫  M1 Integration by parts  
 ( )2 2 21 1

2 4e e 1 et t tx t A= + − +  A1   
 21 1

2 4 e tx t A −= + +  F1 Divide by their I (must also divide constant)  
 1

40, 1 1t x A= = ⇒ = +  M1 Condition on x  
 231 1

2 4 4 e tx t −= + +  F1 Follow a non-trivial GS  
    9 
(ii) 2 d 1

d
y

y x x
=  M1 Separate  

 2 1d dy x
y x

=∫ ∫  M1 Integrate  

 2ln lny x c= +     
 y B x=  M1 Make y subject, dealing properly with constant  
 ( )0 , 1, 4 4t x y y x= = = ⇒ =  M1 Condition  
 231 1

2 4 44 e ty t −= + +  F1 y = 4√(their x in terms of t)  

    5 
(iii) d 2 6

d
z z
x x

+ =  M1 Divide DE by x  

 ( )2exp dxI x= ∫  M1 Attempt integrating factor  
 2x=  A1 Simplified  
 ( )2 2d 6

d
x z x

x
=  F1 Follow their integrating factor  

 2 32x z x C= +  A1   
 22z x Cx−= +  F1 Divide by their I (must also divide constant)  
 ( )0 , 1, 3 1t x z C= = = ⇒ =  M1 Condition on z  
 22z x x−= +  A1 cao (in terms of x)  
 1 0.852t x= ⇒ =     
 3.69y =  B1 Any 2 values (at least 3sf)  
 3.08z =  B1 All 3 correct (and 3sf)  
    10
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3(i) d 1 f( )
d

v x
x v

=  so ( ) dunless f( ) 0 , 0
d
vx v
x

= → ⇒ → ±∞  
M1

Consider d
d

v
x

 or d
d

x
v

  when v = 0, but not if 

d 0
d

v
x

=  
 

 i.e. gradient parallel to v-axis (vertical) E1 Must conclude about direction   
 

2 2
d 1 14000 0
d 5000 5000

= ⇒ = − =
vx v
x

 M1 Consider d
d

v
x

 when x = 4000  

 so if 0≠v  then gradient parallel to x-axis (horizontal) E1 Must conclude about direction  
  M1 Add to tangent field  
  A1 Several vertical direction indicators on x-axis  
    6 
(ii) M1 Attempt one curve  
 A1   
 M1 Attempt second curve  
 

 

A1 

  

 0 0.05V = ⇒ probe reaches B B1 Must be consistent with their curve  
 0 0.025V = ⇒ probe returns to A B1 Must be consistent with their curve  
   N.B. Cannot score these if curve not drawn  
    6 
(iii) ( )2 2d (9000 ) (1000 ) dv v x x x− −= − − +∫ ∫  M1 Separate  
 M1 Integrate  
 B1 LHS  
 

21
2

1 1
9000 1000

v c
x x

= + +
− +

 
A1 RHS  

 21 1 1
02 9000 1000V c= + +  M1 Condition  

 2 2 1
0 450

2 2
9000 1000

v V
x x

= + + −
− +

 A1   

    6 
(iv) minimum when x = 4000 B1 Clearly stated  
 M1 Substitute their x into v or 2v   
 

2 22 2 1
min 05000 5000 450v V= + + −  

F1 Their 2v  or v when x = 4000  
 need 2

min 0v >  M1 For 2
min 0v >   

 2 2 1 4
min 0 450 50000 if v V> > −  M1 Attempt inequality for 2

0V   
 0 0.0377V >  A1 cao  
    6 
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4(i) 2x x y= −&& & &  M1 Differentiate first equation  
 2 (5 4 18)x x y= − − +&  M1 Substitute for &y   
 2 3y x x= + − &  M1 y in terms of , &x x   
 2 5 4(2 3 ) 18x x x x x= − + + − −&& & &  M1 Substitute for y  
 2 3 6x x x+ − = −&& &  E1 LHS  
  E1 RHS  
    6 
(ii) 2 2 3 0λ λ+ − =  M1 Auxiliary equation  
 1 or 3λ = −  A1   
 CF 3e et tx A B−= +  F1 CF for their roots  
 PI x a=  B1 Constant PI  
 3 6 2a a− = − ⇒ =  B1 PI correct  
 32 e et tx A B−= + +  F1 Their CF + PI  
 2 3y x x= + − &  M1 y in terms of , &x x   
 3 34 2 e 2 e 3 ( 3 e e )t t t tA B A B− −= + + + − − +  M1 Differentiate x and substitute  

 37 5 e et ty A B−= + +  A1 Constants must correspond with those in x  

    9 
(iii) 4 2 A B= + +  M1 Condition on x  
 17 7 5A B= + +  M1 Condition on y  
 2, 0A B= =  M1 Solve  
 32 2e tx −= +  F1 Follow their GS  
 37 10e ty −= +  F1 Follow their GS  

    
 B1 Sketch of x starts at 4 and decreases  
 

 

B1 Asymptote x = 2  

    
 B1 Sketch of y starts at 17 and decreases  
 

 

B1 Asymptote y =7  

    9 
     
     

7 
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