

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

15 JUNE 2006

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

Differential Equations

Thursday

rsday

Afternoon

1 hour 30 minutes

4758

Additional materials: 8 page answer booklet Graph paper MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer any three questions.
- There is an **insert** for use in Question **3**.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by g m s⁻². Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.

2

1 The displacement x at time t of an oscillating system from a fixed point is given by

$$\ddot{x} + 2\lambda \dot{x} + 5x = 0,$$

where $\lambda \ge 0$.

- (i) For what value of λ is the motion simple harmonic? State the general solution in this case.
- (ii) Find the range of values of λ for which the system is under-damped. [3]

Consider the case $\lambda = 1$.

- (iii) Find the general solution of the differential equation. [3]
- When t = 0, $x = x_0$ and $\dot{x} = 0$, where x_0 is a positive constant.
- (iv) Find the particular solution. [4]
- (v) Find the least positive value of t for which x = 0. [3]

Now consider the case $\lambda = 3$ with the same initial conditions.

- (vi) Find the particular solution and show that it is never zero for t > 0. [8]
- 2 The positive quantities x, y and z are related and vary with time t, where $t \ge 0$. The value of x is described by the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} + 2x = t + 1.$$

When t = 0, x = 1.

(i) Solve the equation to find x in terms of t.

The quantity y is related to x by the differential equation $2x \frac{dy}{dx} = y$. When t = 0, y = 4.

(ii) Solve the equation to find y in terms of x. Hence express y in terms of t. [5]

The quantity z is related to x by the differential equation $x\frac{dz}{dx} + 2z = 6x$. When t = 0, z = 3.

(iii) Solve this equation for z in terms of x. Calculate the values of x, y and z when t = 1, giving your answers correct to 3 significant figures. [10]

[9]

[3]

3 Answer parts (i) and (ii) on the insert provided.

Two spherical bodies, Alpha and Beta, each of radius 1000 km, are in deep space. The point A is on the surface of Alpha, and the point B is on the surface of Beta. These points are the closest points on the two bodies and the distance AB has the constant value of 8000 km.

A probe is fired from A at a speed of $V_0 \text{ km s}^{-1}$ in an attempt to reach B, travelling in a straight line. At time *t* seconds after firing, the displacement of the probe from A is *x* km, and the velocity of the probe is *v* km s⁻¹.

The equation of motion for the probe is

$$v\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{1}{(9000-x)^2} - \frac{1}{(1000+x)^2}.$$

This differential equation is to be investigated first by means of a tangent field, shown on the insert.

- (i) Show that the direction indicators are parallel to the *v*-axis when v = 0 ($x \neq 4000$). Show also that the direction indicators are parallel to the *x*-axis when x = 4000 ($v \neq 0$). Hence complete the tangent field on the insert, excluding the point (4000, 0). [6]
- (ii) Sketch the solution curve through (0, 0.025) and the solution curve through (0, 0.05). Hence state what happens to the probe when the speed of projection is

(A)
$$0.025 \text{ km s}^{-1}$$
,
(B) 0.05 km s^{-1} . [6]

- (iii) Solve the differential equation to find v^2 in terms of x and V_0 . [6]
- (iv) Given that the probe reaches B, state the value of x at which v^2 is least. Hence find from your solution in part (iii) the range of values of V_0 for which the probe reaches B. [6]
- 4 The simultaneous differential equations

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2x - y + 3$$
$$\frac{\mathrm{d}y}{\mathrm{d}t} = 5x - 4y + 18$$

are to be solved for $t \ge 0$.

(i) Show that
$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} - 3x = -6$$
. [6]

- (ii) Find the general solution for x in terms of t. Hence obtain the corresponding general solution for y.
- (iii) Given that x = 4, y = 17 when t = 0, find the particular solutions for x and y and sketch a graph of each solution. [9]

Candidate Name	Centre Number	Candidate Number	
			RECOGNISING ACHIEVEMENT

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4758

Differential Equations INSERT

Thursday

15 JUNE 2006

Afternoon

1 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

- This **insert** should be used in Question **3**.
- Write your name, centre number and candidate number in the spaces provided at the top of this page and attach it to your answer booklet.

Insert for use with Question 3

Mark Scheme 4758 June 2006

- 1(i) $\lambda = 0$ $x = A\cos\sqrt{5}t + B\sin\sqrt{5}t$
- (ii) $(2\lambda)^2 - 4 \cdot 5 < 0$

$$0 < \lambda < \sqrt{5}$$

(iii)
$$\alpha^{2} + 2\alpha + 5 = 0$$
$$\alpha = -1 \pm 2j$$
$$x = e^{-t} (C \cos 2t + D \sin 2t)$$

- (iv) $x_0 = C$ $\dot{x} = -e^{-t} \left(C \cos 2t + D \sin 2t \right) + e^{-t} \left(-2C \sin 2t + 2D \cos 2t \right)$ 0 = -C + 2D $D = \frac{1}{2}x_0$ $x = x_0 e^{-t} \left(\cos 2t + \frac{1}{2} \sin 2t \right)$
- (v) $\cos 2t + \frac{1}{2}\sin 2t = 0$ $\tan 2t = -2$ t = 1.017
- (vi) $\alpha^2 + 6\alpha + 5$ $\alpha = -1, -5$ $x = E e^{-t} + F e^{-5t}$ $x_0 = E + F$ $\dot{x} = -E e^{-t} - 5F e^{-5t}$ 0 = -E - 5F $E = \frac{5}{4} x_0, F = -\frac{1}{4} x_0$ $x = \frac{1}{4} x_0 \left(5 \, \mathrm{e}^{-t} - \mathrm{e}^{-5t} \right)$ $x = \frac{1}{4} x_0 e^{-t} \left(5 - e^{-4t} \right)$ $t > 0 \Longrightarrow 5 > e^{-4t}, x_0 > 0, e^{-t} > 0 \Longrightarrow x > 0$ i.e. never zero

B1 M1 A1	$\cos \sqrt{5}t$ or $\sin \sqrt{5}t$ or $A \cos \omega t + B \sin \omega t$ seen or GS for their λ	2
M1 A1 A1	Use of discriminant Correct inequality Accept lower limit omitted or $-\sqrt{5}$	3
M1 A1	Auxiliary equation	U
F1	CF for their roots	3
M1	Condition on <i>x</i>	
M1	Differentiate (product rule)	
M1	Condition on \dot{x}	
A1	сао	4
M1		
M1 A1	сао	3
M1 A1	Auxiliary equation	
F1	CF for their roots	
M1	Condition on x	
M1	Condition on <i>x</i>	
A1	сао	
M1	Attempt complete method	
E1	Fully justified (only $\neq 0$ required)	
		8

M1

A1

Β1

M1

Differentiate and substitute

2(i) $\lambda + 2 = 0 \Longrightarrow \lambda = -2$ CF $x = Ae^{-2t}$ PI x = at + b a + 2(at + b) = t + 1 2a = 1, a + 2b = 1 $a = \frac{1}{2}, b = \frac{1}{4}$ $x = \frac{1}{2}t + \frac{1}{4} + Ae^{-2t}$ $t = 0, x = 1 \Longrightarrow 1 = \frac{1}{4} + A$ $x = \frac{1}{2}t + \frac{1}{4} + \frac{3}{4}e^{-2t}$

Alternatively: $I = \exp(\int 2 dt) = e^{2t}$

$$I = \exp(\int 2 \, dt) = e^{2t}$$

$$e^{2t} \frac{dx}{dt} + 2e^{2t} x = e^{2t} (t+1)$$

$$e^{2t} x = \int e^{2t} (t+1) dt$$

$$= \frac{1}{2}e^{2t} (t+1) - \int \frac{1}{2}e^{2t} dt$$

$$e^{2t} x = \frac{1}{2}e^{2t} (t+1) - \frac{1}{4}e^{2t} + A$$

$$x = \frac{1}{2}t + \frac{1}{4} + Ae^{-2t}$$

$$t = 0, x = 1 \Longrightarrow 1 = \frac{1}{4} + A$$

$$x = \frac{1}{2}t + \frac{1}{4} + \frac{3}{4}e^{-2t}$$

(ii)

$$\frac{2}{y}\frac{dy}{dx} = \frac{1}{x}$$

$$\int \frac{2}{y} dy = \int \frac{1}{x} dx$$

$$2 \ln y = \ln x + c$$

$$y = B\sqrt{x}$$

$$(t = 0), x = 1, y = 4 \Longrightarrow y = 4\sqrt{x}$$

$$y = 4\sqrt{\frac{1}{2}t + \frac{1}{4} + \frac{3}{4}e^{-2t}}$$

(iii)

$$\frac{dz}{dx} + \frac{2}{x}z = 6$$

$$I = \exp\left(\int \frac{2}{x} dx\right)$$

$$= x^{2}$$

$$\frac{d}{dx} \left(x^{2}z\right) = 6x^{2}$$

$$x^{2}z = 2x^{3} + C$$

$$z = 2x + Cx^{-2}$$

$$(t = 0), x = 1, z = 3 \Longrightarrow C = 1$$

$$z = 2x + x^{-2}$$

$$t = 1 \Longrightarrow x = 0.852$$

$$y = 3.69$$

$$z = 3.08$$

M1	Compare
A1	
Г I M1	
F1	Follow a non-trivial GS
M1	
A1	Integrating factor
B1	Multiply DE by their /
M1	Attempt integral
M1	Integration by parts
A1	
F1	Divide by their <i>I</i> (must also divide constant)
M1	Condition on x
F1	Follow a non-trivial GS
M1	Separate
M1	Integrate
M1	Make y subject, dealing properly with constant
M1	Condition
F1	$y = 4\sqrt{(\text{their } x \text{ in terms of } t)}$
M1	Divide DE by x
M1	Attempt integrating factor
A1	Simplified
F1	Follow their integrating factor
A1	
F1	Divide by their I (must also divide constant)
M1	Condition on z
A1	cao (in terms of x)

- B1 Any 2 values (at least 3sf)
- B1 All 3 correct (and 3sf)

10

9

5

4758

Mark Scheme

3(i)
$$\frac{dv}{dx} = \frac{1}{v} f(x)$$
 so (unless $f(x) = 0$), $v \to 0 \Rightarrow \frac{dv}{dx} \to \pm \infty$

i.e. gradient parallel to *v*-axis (vertical)

$$x = 4000 \Rightarrow v \frac{dv}{dx} = \frac{1}{5000^2} - \frac{1}{5000^2} = 0$$

so if $v \neq 0$ then gradient parallel to *x*-axis (horizontal)

(iii)
$$\int v \, dv = \int \left((9000 - x)^{-2} - (1000 + x)^{-2} \right) dx$$
$$\frac{1}{2}v^2 = \frac{1}{9000 - x} + \frac{1}{1000 + x} + c$$
$$\frac{1}{2}V_0^2 = \frac{1}{9000} + \frac{1}{1000} + c$$
$$v^2 = \frac{2}{9000 - x} + \frac{2}{1000 + x} + V_0^2 - \frac{1}{450}$$

(iv) minimum when x = 4000 $v_{\min}^2 = \frac{2}{5000} + \frac{2}{5000} + V_0^2 - \frac{1}{450}$

> need $v_{\min}^2 > 0$ $v_{\min}^2 > 0$ if $V_0^2 > \frac{1}{450} - \frac{4}{5000}$ $V_0 > 0.0377$

Consider
$$\frac{dv}{dx}$$
 or $\frac{dx}{dv}$ when $v = 0$, but not if

$$\frac{\mathrm{d}v}{\mathrm{d}x} = 0$$

E1 Must conclude about direction

M1 Consider $\frac{dv}{dx}$ when x = 4000

- E1 Must conclude about direction
- M1 Add to tangent field
- A1 Several vertical direction indicators on x-axis
- M1 Attempt one curve A1
- M1 Attempt second curve
- A1

M1

- B1 Must be consistent with their curve
- B1 Must be consistent with their curve N.B. Cannot score these if curve not drawn
- M1 Separate
- M1 Integrate
- B1 LHS
- A1 RHS
- M1 Condition

A1

- B1 Clearly stated
- M1 Substitute their *x* into *v* or v^2
- F1 Their v^2 or v when x = 4000
- M1 For $v_{\min}^2 > 0$
- M1 Attempt inequality for V_0^2
- A1 cao

6

6

6

M1

- 4(i) $\ddot{x} = 2\dot{x} \dot{y}$ = $2\dot{x} - (5x - 4y + 18)$ $y = 2x + 3 - \dot{x}$ $\ddot{x} = 2\dot{x} - 5x + 4(2x + 3 - \dot{x}) - 18$ $\ddot{x} + 2\dot{x} - 3x = -6$
- (ii) $\lambda^{2} + 2\lambda - 3 = 0$ $\lambda = 1 \text{ or } -3$ $CF \quad x = A e^{-3t} + B e^{t}$ $PI \quad x = a$ $-3a = -6 \Rightarrow a = 2$ $x = 2 + A e^{-3t} + B e^{t}$ $y = 2x + 3 - \dot{x}$ $= 4 + 2A e^{-3t} + 2B e^{t} + 3 - (-3A e^{-3t} + B e^{t})$ $y = 7 + 5A e^{-3t} + B e^{t}$
- (iii) 4 = 2 + A + B 17 = 7 + 5A + B A = 2, B = 0 $x = 2 + 2e^{-3t}$

$$x = 2 + 2e^{-3x}$$

Substitute for \dot{y} M1 y in terms of x, \dot{x} M1 Substitute for y M1 E1 LHS RHS E1 M1 Auxiliary equation A1 F1 CF for their roots Constant PI B1 PI correct B1 F1 Their CF + PI y in terms of x, \dot{x} M1 M1 Differentiate x and substitute A1 Constants must correspond with those in x M1 Condition on *x* M1 Condition on v M1 Solve F1 Follow their GS F1 Follow their GS B1 Sketch of x starts at 4 and decreases B1 Asymptote x = 2

Differentiate first equation

- B1 Sketch of *y* starts at 17 and decreases
- B1 Asymptote y =7

6